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Recently Hall & Seddougui (1989) considered the secondary instability of large- 
amplitude Gortler vortices in a growing boundary layer into a three-dimensional flow 
with wavy vortex boundaries. They obtained a pair of coupled, linear ordinary 
differential equations for this instability which constituted an eigenproblem for the 
wavelength and frequency of this wavy mode. In  the course of investigating the 
nonlinear version of this problem (Seddougui & Bassom 1990), we have found that 
the numerical work of Hall & Seddougui (1989) is incomplete; this deficiency is 
rectified here. In  particular, we find that many neutrally stable modes are possible ; 
we derive the properties of such modes in a high-wavenumber limit and show that 
the combination of the results of Hall & Seddougui and our modifications lead to 
conclusions which are consistent with the available experimental observations. 

1. Introduction 
The purpose of this article is to repeat and improve the calculation of Hall & 

Seddougui (1989, hereinafter referred to as HS), who were concerned with obtaining 
an asymptotic description of the three-dimensional breakdown of steady, spanwise 
periodic Gortler vortices. These authors noted that in the experiments of Bippes & 
Gortler (1972) and of Aihara & Koyama (1981) this breakdown led to a time-periodic 
flow with wavy vortex boundaries similar to those that occur in the Taylor problem. 
In  order to investigate this phenomenon theoretically, HS superimposed small 
spanwise periodic travelling waves on the Gortler vortices and monitored their 
development. 

The first analytical work concerned with Gortler vortices concentrated on the 
linear stability of external flows over concave walls. However, Hall (1982a, b, 1983) 
showed that much of this early work was fundamentally flawed for it invoked the 
parallel flow approximation ; but Hall demonstrated that this assumption is 
unjustifiable except in the limit of small vortex wavelength. Moreover, in this limit, 
the Gortler instability may be described by an asymptotic structure which accounts 
for boundary-layer growth in a rational manner. This asymptotic structure was 
obtained by Hall (1982 a) for the case of infinitesimal-amplitude vortices and this was 
used by Hall (1982b) to determine the modified structure in the case of weakly 
nonlinear vortices. Subsequently, Hall & Lakin (1988) used this latter work to 
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deduce the flow configuration for fully nonlinear, high-wavenumber vortices, a t  
which point the mean flow correction generated by the presence of the vortices 
becomes as large as the basic (undisturbed) flow itself. These fully nonlinear vortices 
are of the type whose stability to travelling wave disturbances was considered by HS. 
Hall & Lakin (1988) demonstrated that for these large-amplitude vortices the flow 
structure consists of essentially three distinct regions. The main vortex activity is 
restricted to a central 'core' region which is bounded by two thin shear layers. The 
vortices decay exponentially within these shear regions and outside these zones the 
mean flow is governed by the usual boundary-layer equations. 

HS imposed infinitesimal secondary instabilities upon the flow within the shear 
layers ; these modes took the form of short-wavelength, high-frequency travelling 
waves which were radians out of phase with the fundamental in the spanwise 
direction so that any instabilities that occurred produced locally wavy vortex 
boundaries in the shear layers. It was shown in HS that the governing equations for 
these secondary modes takes the forms 

(1.la) 

(1.lb) 

In this pair of coupled ordinary differential equations for the functions w(q) and w(y), 
q is an 0(1) coordinate based upon the thickness of the shear layers, (w, w) are the 
normal and spanwise components of the velocity of the travelling wave disturbance, 
and K and 52 are the (dimensionless) wavenumber and frequency of the imposed 
perturbation. Further, the function V ( q )  satisfies the Painleve' equation, 

d2w -- i(52q+K)w+2Vzw-~2/6i(52q+K) Vw = 0. 
dq2 

( l . l c )  

with V - ( - q ) f  as q+-m and V-1/2Ai(q) as q-+03, see Hastings & McLeod 
(1980). For a complete description of the derivation of (l.l), together with an 
extended account of the previous theoretical and practical work relating to Gortler 
vortices, see HS. However, we do note that there is a difference in the third term of 
(1.la) and the corresponding one in HS: this is due to a typographical error in that 
paper. 

HS concentrated on locating solutions of (1.1) for which the flow is neutrally 
stable, or, in other words, on finding solutions of (1 . l )  for which K and 52 are real. To 
ensure that the travelling waves were confined within the shear layers, i t  was 
necessary to impose the boundary conditions 

w,w+0 as q-++_03. ( l . l d )  

This then implies that  as q+ 03 ,  ( i . lu ,  b )  can be written as 

( 1 . 2 ~ )  

and (1.2b) 



Three-dimensionality and time-dependence in Gortler vortices 663 

so that in this limit two independent solutions for v and w can be found in terms of 
the Airy function, Ai. For y --f - co, HS demonstrated that ( 1  . l  a, b )  assume the forms 

(1.3b) 

Then the appropriate expansions within (1.3) take the form 

21 = (vol + . . .) exp ( - $lyl"), w = lqlt (wol + . . .) exp ( -$~yl;), 

where 243$4 + 36(s2(6 + 5iQ) - 3202 = 0, 

and the two roots of this equation with positive real part were used in order to 
generate two independent solutions of (1.3) with v, w --f 0, 

These asymptotic solutions for v and w as 171 + 00 were taken as initial values in 
the numerical integration scheme used to solve ( 1 . 1 ) .  These equations were written 
as a system of four first-order differential equations which was solved using a 
standard fourth-order Runge-Kutta method. The integration procedure was started 
at y = - co and at y = 00 and continued to y = 0, finding two independent solutions 
from each direction. At y = 0 the continuity of a linear combination of the 
independent solutions from each direction produced a problem of the form 

--f - co. 

AX = 0, (1.4) 

where A ( K ,  Q) is a 4 x 4 complex valued matrix and x is a vector containing the 
coefficients of the independent solutions from y = & 00. Clearly there is only a non- 
trivial solution of (1.4) if det ( A )  = 0. HS found real values of K and 52 for which det 
(A)  = 0 (and hence for which there are non-trivial neutrally stable travelling waves) 
by employing a Newton-Raphson iteration scheme for two variables. 

HS focused their attention on the region K ,  Q > 0 and found only one eigenvalue 
pair, which was located at 

They speculated that other eigenpairs might possibly exist a t  higher values of K and 
52, although none were found. Additionally, HS compared these theoretical findings 
with the results of the experimental observations by Kohama (1988) and Peerhossaini 
& Wesfreid ( 1 9 8 8 ~ ) .  They reported good qualitative agreement with these practical 
results, although the lack of details given in these papers concerning the specific 
experimental configurations used prevented a detailed quantitative comparison 
being made. 

Recent work by Seddougui & Bassom (1990) has been chiefly concerned with the 
extension of HS to the nonlinear regime. Seddougui & Bassom have shown that at 
the point a t  which the secondary wavy mode becomes nonlinear, the steady vortex 
flow of HS is affected by self-interactions of the wavy mode and the problem is then 
governed by an infinity of coupled second-order ordinary differential equations. In 
the course of this work we reconsidered the linear problem of HS and discovered that 
the numerical results quoted in that paper are incomplete. In particular, we found 
eigenvalue pairs lower than (1.5), have shown that there are (plausibly) an infinite 
number of real-valued solution pairs of ( l . l ) ,  and have obtained an asymptotic 
description of the solution of this equation for K % 1. 

(K,  52) = (4.156,0.742). (1.5) 
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FIQURE 1. Sketches of the contours in (K,  Q)-space on which the real and imaginary parts of det 
(A) ,  defined by (1.4), vanish. On solid lines Re (det A)  = 0, on broken lines Im (det A )  = 0. We have 
a solution for neutral wavy modes wherever these contours meet and five such locations are ringed, 
s e e ( 2 . 1 ) . H e r e O . 0 5 < i 2 < 3 , a n d ( a ) 0 . 1 < K < 4 , ( 6 ) 4 < K < 7 . 9 .  

The procedure for the remainder of this paper is as follows. In $2 we present a 
revised solution of (1.1) for O(1) values of K and Q, in $3 we consider the case K 9 
1 and finally we draw some conclusions. 

2. The numerical solution of (1.1)-(1.3) 
To obtain real eigenvalues of the system (1.1)-( 1.3) we employed the numerical 

method briefly described in the previous section with one modification. Instead of 
using the double Newton-Raphson iteration scheme to locate the neutral modes, we 
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considered a whole range of real pairs (K,  52) and for each chosen pair we computed 
the matrix A defined by (1.4). Then, using a standard package, we constructed the 
contours in the (K,  SZ)-plane on which Re (det A )  = 0 or Im (det A )  = 0. These lines, 
for the region 0.05 < 52 < 3, 0.1 < K < 7.9 are illustrated in figure 1, where solid 
lines denote contours on which Re (detA) = 0 and broken lines those on which 
Im (detA) = 0. Plainly, where these contours cross we have a solution for 
infinitesimal, neutrally stable wavy modes. We have omitted the contours on the 
left-hand sides of the figures. The absolute values of the determinant of A within 
these zones are very small and the interpolation used to construct the contours here 
results in an extremely congested diagram in which contours of Re (det A )  = 0 and 
Im (det A) = 0 run very close together. However, careful analysis shows that 
although these contours are close to each other they do not intersect and so we can 
conclude that there are no neutral pairs (K,SZ) in these regions. Consequently, we 
have chosen to omit the densely packed contours here to avoid cluttering the figure 
with unnecessary detail. 

Having identified approximate values of possible wavenumbers and frequencies 
for this secondary mode using this contouring technique, we then applied the 
Newton-Raphson iteration scheme to obtain more accurate values for these 
parameters. Overall, we found eight eigenpairs, namely 

(0.690,0.372), (2.900,0.659), (4.156,0.742), (5.435,0.795),\ 

(7.53, I.OO), (9.60,1.17), (11.4,1.27), (15.7,1.60), J (2.1) 

of which the lowest five are marked on figure 1. We found no more eigenpairs within 
the size of grid used (0 < K < 16,O < 52 < 3), but there is no reason to doubt that if 
this area were suitably enlarged more neutral pairs could be identified. Importantly, 
we deduce from (2.1) that there are neutral pairs lower than (1.5). In  a practical 
setting, if the frequency of the imposed perturbations on a steady vortex flow were 
gradually increased from zero, then the mode with the lowest-frequency eigenvalue 
would be expected to be the most dangerous as it would occur first. The 
eigenfunctions corresponding to this mode are shown in figure 2 and the asymmetry 
of these functions is noticeable. Also, for the case plotted here, Re (w) > 0 across the 
whole of the dominant part of the mode, whereas the spanwise velocity component 
w has a much more oscillatory nature. 

For the higher eigenvalues it was found that it became increasingly more difficult 
to locate neutral modes accurately and although we have given only eight pairs in 
(2.1), we believe that there is indeed an infinite sequence of neutral modes. Inspection 
of the eigenfunctions of figure 2, of those corresponding to the pair (4.156,0.742) 
(presented in HS), and those corresponding to (9.60,1.17), illustrated in figure 3, 
suggests some definite trends. In particular, the eigenfunctions are effectively 
confined to a region in 7-space centred somewhere to the left of 7 = 0. Furthermore, 
for the higher modes, the majority of the disturbance shifts to increasingly more 
negative values of 7? and becomes ever more symmetrical in appearance. The ratio 
of the spanwise and normal velocity components, Iwl/lvl, increases. These behaviours 
led us to an analytical consideration of the problem (1.1)-(1.3) in the limit K 2 1 in 
an attempt to elucidate the governing behaviour of neutral modes in this high- 
wavenumber limit. This work is the subject of the following section. 

22 FLM 220 
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3. The high-wavenumber solution of (1.1H1.3)  
Here we consider the solution of (1.1)-(1.3) for K 4 1. It is found convenient to 

seek neutral modes in which the wavenumber K and the frequency 52 take the forms 

K =  (,8+@K,+ ...), B = a,@, (3.1) 

where ,8 4 1 and O,, K ,  are O(1) constants. Further, we suppose that the mode is 
concentrated within a region of thickness O(/?-i) centred at a point O($) from the 
origin q = 0. If we then write 

(3.2a) 
K 
B q + -  = - @ q c + P $ y ,  

and note that since for large negative q,  V - ( - q ) ) + .  . . , we also have 

(3.2b) 

These scalings suggest that 

w = w , + p w , +  ..., w = @ ( W 0 + ~ ~ W l +  ...), (3.3) 

and inserting these expansions in (1.1) and equating coefficients of leading powers of 
,8 we find that qe = 0. A t  next order we obtain the coupled equations for the functions 
wo and wo: 

d2v, 2 4 6  
dY2 3528 

~isZ,yw,+---I-wo = 0, 

~ ~ - ~ i ( 6 5 2 ~ ) ~ y w ,  = 0, 

with boundary conditions 
wo,w,+O as y++co. 

( 3 . 4 ~ )  

(3.4b) 

(3.44 

By eliminating w, between (3.4a, b) we can derive a fourth-order differential 
equation for wo which may be solved numerically using standard Runge-Kutta ideas. 
However, careful inspection and analysis of (3.4) reveals that a solution of the system 
for which w,, w, + 0 as 171 -+ cr3 is possible for all non-zero real Qo. Without loss of 
generality, we can find solutions of (3.4) such that Re(w,) and Re(w,) are even 
functions about y = 0 whilst Im (w,) and Im (w,) are odd functions. As 52, is not 
determined a t  this stage, we are forced to consider the next-order equations. These 
are found to be 

( 3 . 5 ~ )  d2w, 2 4 6  
dY2 352i 

iiBo yw, + - 

d2w, F+ (A- i52, y) w1 -3(652,); yw, = 
dY Qo 

with w,,w,-+O as y++co. (3.5c) 

Now as the homogeneous forms of (3.5) are precisely those equations given in (3.4), 
the set (3.5) has a solution only if a certain compatibility conditions holds. To derive 
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this compatibility criterion we consider the system adjoint to (3.4) which in this case 
is formed by the functions (gl(y), g2(y)) where 

d2gl ~i520ygl -$i(6SZO)~yg2 = 0, 
dY 

~ + ~ g , + ( & - i ~ , y ) g ,  dy2 3525 = 0, 

(3 .6a)  

(3.66) 

with g1 ,g2+0  as y - t f m .  ( 3 . 6 ~ )  

As before, we can obtain solutions of (3.6) in which the real parts g1 and g2 are even 
functions whilst the respective imaginary parts are odd functions. We multiply 
(3.5~) by gl,  (3 .56)  by g2,  add the resulting equations and integrate by parts over the 
range ( -  m,oo). Then on comparing imaginary parts of the resulting eigenrelation 
we find that (3.5) has a solution only if 

(3.7) 

where the evenness and oddness of the various functions about y = O  has been 
utilized. Incidentally, we note that on equating real parts of the eigenrelation we 
obtain K ,  = 0. Numerically, we found that (3.7) is satisfied for 52, - 0.26 and the 
respective disturbance functions vo and wo for this case are presented in figure 4. 

This then suggests that high-frequency, high-wavenumber modes are indeed 
possible ; in particular if K % 1 we have 52 - 0.26&. Additionally, the position of the 
disturbance within the shear layer moves towards the core region of vortex activity, 
the perturbation is confined within a thin, O(K-i) sized zone relative to the depth of 
the shear layer, and the spanwise velocity component of the wavy mode is O(K$ 
times that of the normal component. These asymptotic results provide satisfactory 
agreement with the higher numerical values calculated in (2 .1)  and it is observed that 
there is resemblance between the asymptotic eigenfunctions of figure 4 and those 
corresponding to the eigenpair (9.60,1.17) shown in figure 3. We also remark that 
here we have not specified K and have only assumed that it is some large quantity. 
In practice the actual possible values for K % 1 would be determined by a higher- 
order problem but we do not pursue such a consideration here. Instead, we feel that 
the principal result of this analysis is that, almost certainly, there is an infinity of 
neutral wavy modes for this flow structure. This confirms the conjective presented 
by HS, who postulated that neutral wavy modes may possibly exist at wavenumbers 
higher than that for the mode with eigenvalues given by (1.5). 

4. Conclusions 
In this article, which should be read in conjunction with HS, we have demonstrated 

that there are many solutions for infinitesimal, neutrally stable wavy modes confined 
to the shear layers of a fully nonlinear, high-wavenumber Gortler vortex. This is a t  
variance with the result of HS who found only one such mode: although their 
conclusion, that such a large-amplitude vortex is unstable to modes trapped within 
the shear layers, remains unaltered. Our results are an improvement on those of HS 
due to the use of the contouring method described in $ 2 .  This ensured that all 
possible neutral mode solutions within the region 0 < K < 16, 0 < SZ < 3 should be 
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identified. This is in contrast to the scheme employed by HS, who used the 
Newton-Raphson technique alone and relied on finding all possible neutral solutions 
by using a sufficiently wide variety of initial estimates to which the iteration 
procedure was applied. 

Since the wavy modes are stable when their non-dimensional frequency D = 0, HS 
noted that as D is increased the mode with the lowest frequency is potentially more 
dangerous than the other modes as it occurs first. However, a t  large values of D it 
is unclear which is the most important mode as we would need to identify the mode 
with the largest growth rate. The contour plot in figure 1 shows that ( K ,  SZ)  = (0.690, 
0.372) is the lowest mode within the region K > 0, D> 0 and that, plausibly, an 
indefinite number of neutral modes exists. In  particular there are modes with K % 
D 3- 1, whose asymptotic structure has been discussed in $3. 

The physical and experimental implications of our revised analysis follow similar 
lines to those given in HS and to which the reader is referred. We remark that the 
wavy mode described here can be closely related to the practical observations of 
Peerhossaini & Wesfreid (1988a, b ) .  Indeed, these authors show that the lateral 
oscillations of the vortices are the result of ‘interaction between a transverse 
travelling wave and the Gortler vortices, reminiscent of the wavy vortex motion in 
Taylor-Couette instability ’. Thus wavy vortices have been seen in practice and 
Peerhossaini & Wesfreid (1988b) commented on two particular forms which they 
called the ‘oscillatory mode’ and ‘jump and stay’ motions. In  the former case, 
Peerhossaini & Wesfreid observed that as the Gortler number was increased the 
upwash plane between successive Gortler vortices began to oscillate around its 
stationary position. The spectrum of the frequencies present within the oscillation 
contained one distinctive peak and we interpret this event as marking the onset of 
the secondary instability described both here and in HS. 

At larger amplitudes of the oscillatory mode, the observed motion consisted of a 
series of jumps from one state into another with a long residence time at each stage 
-the ‘jump and stay’ motion. The theoretical explanation of this phenomenon is 
provided by our finding that, on the basis of linear theory, there are many possible 
neutral pairs (K,D).  If, according to a weakly nonlinear theory (work described in 
Seddougui & Bassom 1990), these neutral states prove to be supercritically stable 
then this would imply that stable finite-amplitude oscillatory modes with a 
multitude of possible wavenumber-frequency pairings (K,  D) may be achieved. As 
the Gortler number increases it is probable that the relative importance of each of 
these states changes and thence the development of the flow would consist of the 
‘jump and stay ’ motion described by Peerhossaini & Wesfreid. As the flow evolved 
the oscillatory mode would jump from state to state as the global significance of each 
of the configurations changed. 

In  summary, we feel that our principal finding here is that the existence of many 
possible neutral linear modes is predicted. A natural question then concerns which of 
these modes is likely to be the most importance in practice ? This may be resolved by 
pursuing weakly nonlinear and, ultimately, fully nonlinear analyses of these wavy 
modes - a task currently being tackled by Seddougui & Bassom. When concrete 
conclusions become available from this study, the full implications of our work for 
this wavy vortex problem should become clearer. 
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